skip to main content


Search for: All records

Creators/Authors contains: "Chen, Lingwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graphs have emerged as one of the most important and powerful data structures to perform content analysis in many fields. In this line of work, node classification is a classic task, which is generally performed using graph neural networks (GNNs). Unfortunately, regular GNNs cannot be well generalized into the real-world application scenario when the labeled nodes are few. To address this challenge, we propose a novel few-shot node classification model that leverages pseudo-labeling with graph active learning. We first provide a theoretical analysis to argue that extra unlabeled data benefit few-shot classification. Inspired by this, our model proceeds by performing multi-level data augmentation with consistency and contrastive regularizations for better semi-supervised pseudo-labeling, and further devising graph active learning to facilitate pseudo-label selection and improve model effectiveness. Extensive experiments on four public citation networks have demonstrated that our model can effectively improve node classification accuracy with considerably few labeled data, which significantly outperforms all state-of-the-art baselines by large margins. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. As malicious bots reside in a network to disrupt network stability, graph neural networks (GNNs) have emerged as one of the most popular bot detection methods. However, in most cases these graphs are significantly class-imbalanced. To address this issue, graph oversampling has recently been proposed to synthesize nodes and edges, which still suffers from graph heterophily, leading to suboptimal performance. In this paper, we propose HOVER, which implements Homophilic Oversampling Via Edge Removal for bot detection on graphs. Instead of oversampling nodes and edges within initial graph structure, HOVER designs a simple edge removal method with heuristic criteria to mitigate heterophily and learn distinguishable node embeddings, which are then used to oversample minority bots to generate a balanced class distribution without edge synthesis. Experiments on TON IoT networks demonstrate the state-of-the-art performance of HOVER on bot detection with high graph heterophily and extreme class imbalance. 
    more » « less
    Free, publicly-accessible full text available October 21, 2024
  3. null (Ed.)